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Abstract: Using Sentinel-1 image series with 10m resolution from the past to present by 

Principal Component Analysis (PCA) method for Ho Chi Minh City area, helping to assess 

flood risk due to canal leveling, slitting in some complicated times, narrows the space for 

water regulation. In addition, Climate change causes sea level rise, thereby increasing the 

existing water level along with that in large rivers and also causing storm surge, which 

coincides with the time of flood discharge at Dau Tieng and Tri An reservoirs. The situation 

of groundwater exploitation, subsidence of the existing ground is continuous and increasing. 

With the accumulated settlement estimated to date about 100 cm, the current settlement rate 

is about 2-5 cm per year. Particularly in concentrated areas such as commercial works, the 

subsidence rate is about 7-8 cm per year. The rate of land subsidence is about twice as high 

as sea level rise. Therefore, Ho Chi Minh City is one of the cities affected by flooding due 

to high tide, especially in the current climate change conditions. According to the statistics 

of flood-prone areas due to high tides from 2014 to 2022, Can Gio district has the highest 

risk of flooding, with a flooded area of up to 3.713.236 hectares. The districts with an 

extremely high risk of flooding after Can Gio district are Cu Chi district, Binh Chanh 

district, and Nha Be district, with 1,764,564 ha, and 1,296,246 ha, and 1,012,550 hectares. 

Keywords: Satellite image; Sentinel-1; Flood risk; Principal Component Analysis; High 

Tides. 
 

1. Introduction 

Statistical and near-real-time information about flooded areas is necessary for several 

public services, e.g., emergency, rescue, rehabilitation, spatial planning, habitat monitoring, 

and adapting to climate change. Remote Sensing satellites can provide operational and timely 

data as well as spatial information on flooded areas covered by water. Two types of satellite 

imagery are available to monitor flood dynamics on the surface: optical aperture radar (OAR) 

and data radar (SAR). Optical remote sensing can only be applied in cloudless situations. 

However, flooding often occurs during periods of prolonged rain and frequent cloud cover. 

Therefore, SAR systems are often the preferred tool for monitoring floods from space. The 

flat, water surface is characterized by low SAR backscatter, and the difference in backscatter 

reflectance often enables flood mapping [1]. Using a combination of different SAR image 

data such as COSMO-SkyMed and Sentinel-1, or combined with Flood Research Optical 

images such as MODIS and terraSAR-X [2–5], monitor inundation changes thanks to the 

advantage of multi-temporal images and through surface cover indices [6–10], through the 

dynamic identification of the water-marked area [11], using the urban area marker [11–15], 

and using backscatter signals from SAR images to detect and mark the rapid evolution of 

flooded areas, especially flooding caused by high tides [16–18]. Based on the summary of A 
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local thresholding approach to flood water delineation [8, 18], the most applied method to 

map floods from a single image is the threshold histogram, which can be used in conjunction 

with other image processing methods. different photos. Time change detection techniques 

[19–20] and associative analysis [21] have also been used to map open water. However, time-

varying detection methods require two images and may therefore be limited by the temporal 

coverage of the satellite images. To improve the accuracy of flood maps, the advantages of 

ancillary data, such as the HAND index (elevation above the nearest drainage) are derived 

from the DEM (digital elevation model) and the DIST index (distance from drainage system) 

are derived from the watershed as well as the land use map, which has been demonstrated in 

several studies [17, 18, 20, 22]. Most of the proposed methods for flood mapping are semi-

automatic. A fully automated method integrating thresholding separation and fuzzy logic 

classifiers has been proposed and applied by the author [18] for TerraSAR-X processing and 

by the author [23] to process Sentinel-1 (S1). 

Recent research by the authors [24–25] summarized the methods of mapping flooding 

under the forest canopy. Research by the author [24] showed that the most applied method to 

detect submerged areas under vegetation is to identify increased backscatter values compared 

with other objects. The penetration depth of SAR signals into vegetation is higher for longer 

wavelengths, so the use of L-band has been recommended [26, 27–28]. However, several 

studies [20, 29–30] have demonstrated the ability of C-band and X-band data to identify 

submerged vegetation, especially in the case of sparse forest and leafless forests. Co-

polarization signals (HH or VV) are preferred over cross-polarized signals for mapping water 

under vegetation. Studies have shown that using HH polarization leads to more accurate 

results than VV polarization [31–32]. Furthermore, the use of polarization analysis and/or an 

interferometric SAR combination has been used to map flooding under vegetation [33]. 

However, the availability of full polarization data is often limited in terms of spatial extent 

and temporal coverage. 

Sentinel-1 images have modes (i) single polarized VV (Vertical-Vertical) or HH 

(Horizontal) and (ii) double polarized VH (Vertical-horizontal) or HV (Horizontal-Vertical).  

investigated the effects of single VV and double VH polarization for flood monitoring in the 

Ebro River Basin, Spain, using Sentinel-1 images [34]. A combination of Sentinel1 and 

Landsat images for inundation area identification and flood impact monitoring for the 

Houston, Central Greece, and East Coast of Madagascar regions of the United States [35]. 

The results from the above studies all confirmed that the VV polarization for inundation 

monitoring results is quite suitable for building flood maps using Sentinel-1 images. The 

above examples demonstrate that VV polarization can be used to determine the water surface 

area with rapid variation and is well suited to the observation of high tides. 

In the past, the creation of flood maps often took a lot of time and money using SNAP 

software. The recent introduction of the Google Earth Engine (GEE) cloud platform has 

increased the convenience of research [36–37], providing powerful computing resources for 

free. GEE has been widely used in large-scale and long-term flood dynamics monitoring 

missions [38–40]. Another advantage of this platform is that it provides multiple datasets, 

facilitates data collection, and allows researchers to use different datasets for collaborative 

analysis to improve data collection and algorithmic accuracy [41–42]. 

Simultaneous operation of 2 satellites, Sentinel 1A and Sentinel 1B, allows to shorten 

the time of image acquisition at a location on the earth’s surface to 6 days (compared to 12 

days if only 1 satellite is used). The sensor on the Sentinel-1 satellite acquires a composite 

open aperture radar image, channel C. 

2. Methodology 

2.1. Description of study site 
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Topographic: Overall, HCMC has a relatively flat and low terrain with several West-

North and east-northeast slopes, the height of the ground tends to decrease gradually from 

the North-West to the South and Southeast. 

The area is largely distributed into the districts: Cu Chi, Hoc Mon, north of Thu Duc 

City, district 9, north of Binh Chanh district. Heights from 4-10 m account for about 19% of 

the total area; areas with heights above 10 m account for 11% of total area. 

The lowland is distributed in the inner city, the land in Hoc Mon district, Thu Duc city, 

and the southern part of Binh Chanh district is located along the Saigon River; the elevation 

of this area varies from 2-4 m, accounting for about 15% of the whole area of Ho Chi Minh 

City. The low-lying valley comprises a steep slope running from the south of Cu Chi district, 

with an altitude of 0-2 m, and accounts for approximately 55% of Ho Chi Minh City's land 

area. 

Hydrology: Located in the basin of the Dong Nai-Saigon river system, the hydro-

hydraulic mechanism of the canals and rivers is not only influenced by the topography of Ho 

Chi Minh City (mostly less than 2 m), the semi-diurnal regime of the East Sea, but also by 

the exploitation of terraced lakes upstream now and in the future, such as Tri An, Dau Tieng, 

Thac Mo lakes. 

 

Figure 1. Map of Ho Chi Minh City in Vietnam. 

The river system has a total length of 7,955 km; the total water surface area accounts for 

16%; the average flow density is 3.80 km2... Thus, the valley low terrain has an altitude of 

less than 2 m and the water surface represents 61% of the natural area, is located in the river 

gate area with many large regulatory works at the top of the source so the risk of flooding 

occurs in a wide area. 

Rainfall: Total average rainfall in Ho Chi Minh city is quite high from 1800 mm to 2700 

mm, concentrating on July from May to November accounting for up to 90% of rainfall. 
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Hydrological regimes: Since there are two main seasons of the rainy season and the dry 

season, the flow mode in the two systems of the Saigon River and the Dong Nai River also 

forms two respective flow modes. At the same time, due to the impact of the East Sea, the 

rivers of the inner city of Ho Chi Minh city are affected by the tide strongly and throughout 

the year. Here is the semi-diurnal tides regime shown through the fluctuations: 

The moon fluctuates: two times of high tide and two times of low tide; the time of high 

tide is 50 minutes back compared to the previous day. Seasonal developments: There are two 

high tides in a month (from the 27th day of the previous month to the 5th of the following 

month and from the 13th to the 18th of the solar calendar). Seasonal fluctuation: Spring tides 

(days 11, 12, and 1 of the solar calendar): this period is maintained by the flow of the rainy 

season in the inner city, so the high tide period usually lasts from September to January of 

the solar calendar. 

Subsidence: By synthesizing the results of high-speed measurements in the Ho Chi Minh 

city region and the Mekong River Delta in 2017, 2018 of the Ministry of Natural Resources 

and Environments showed the land in Ho Chi Minh city and the provinces of the Cuu Long 

river valley is falling down the main causes are: 

- The group of natural causes such as the displacement of the plates, the soil processes 

attempting to end up dehydrating and the natural contraction of the layer of an early Holoxen 

sediment. 

- The group of human-influenced causes such as underground water mining, urbanization 

increases the load on weak soil, vibration due to traffic activities. 

Based on the Subsidence partition shows that Ho Chi Minh city is falling at a high rate 

of more than 10 cm in 10 years in the district of Binh Chanh, southern of Binh Tan district, 

district 8, district 7, east district 12, western district of Thu Duc, northern districts of Nha Be 

with a total area of 239 km2. Especially where it dropped to 73 cm/10 years, from 2005-2015.  

2.2. Method 

Principal Component Analysis (PCA) operator, this operator generates the principal 

component images from a stack of co-registered detected images. 

The PCA consists of a remapping of the information of the input co-registered images 

into a new set of images. The output images are scaled to prevent negative pixel values. The 

PCA operator consists of the following major steps: 

Average the pixels across the input 

images to compute a mean image. 

Optionally subtract the computed mean 

image from each input image. 

Subtract the mean value of each 

input image (or image from Average 

step) from itself to produce zero-mean 

images. 

Compute covariance matrix from 

the zero-mean images given in Subtract 

step. Perform eigenvalue decomposition 

of the covariance matrix. 

Compute PCA images by 

multiplying the eigenvector matrix by 

the zero-mean images given in Subtract 

step. Here the user can select the 

eigenvectors instead of using all 

vectors. The selection is done with a 

user input threshold, which is in Figure 2. Flowchart of study structure. 
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percentage, on the eigenvalues. For example, in the case of three input images, a1, a2 and a3 

(where a1 >> a2 >> a3) are the eigenvalues, if the threshold is 80% and (a1+a2) >> 80%, then 

a3 will not use in computing the PCA images. Only two PCA images will be produced. 

The flowchart of study structure on principal component analysis (PCA) of Sentinel-1 

satellite images sequence for Ho Chi Minh City (Figure 2). 

The following parameters are calculated from the Sentinel 1 image data series for the 

period 2014-2022 in the Ho Chi Minh City area: 

Source range: The VV polarization band is selected to perform PCA for the marking of 

flood-prone areas and other causes of flooding.  

Eccentricity threshold: Threshold used in eigenvalue selection to produce the final PCA 

image. These are the values determined from the series of VV polarization values for the 

period 2014-2022, suitable for each year. 

Show eigenvalues: Defines eigenvalues to be displayed automatically in areas flooded 

by high tides. 

Subtracting the average image: The average image of the input images for the period 

2014-2022 (September-January next year) is subtracted from each input image before 

applying PCA. 

2.3. Data 

Sentinel-1A was launched on 3 April 2014, and Sentinel-1B on 25 April 2016. They 

orbit 180° apart, together imagining the Earth every six days. 

The two-satellite SENTINEL-1A and SENTINEL-1B constellation offers a 6-day exact 

repeat cycle. The constellation will have a repeat frequency (ascending/descending) of 3 days 

at the equator is expected to provide coverage over Ho Chi Minh city and main shipping 

routes in 1-3 days, regardless of weather conditions. Radar data will be delivered to 

Copernicus services within an hour of acquisition. 

In December 2021, an anomaly in the power supply of Sentinel-1B caused the SAR 

sensor to stop working. Attempts to restore power to the sensor failed, and the mission 

officially ended on August 3, 2022. The highest tides of the year usually appear in October 

and November of the lunar calendar. The tidal regime in Ho Chi Minh City has a semi-diurnal 

tidal regime, with two high and low tides per day. The area affected by this type of tide is 

usually located at parallels near the equator.  

 

(a) (b)

(c) (d)
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The backscatter coefficients under VV polarization for the water area are lower than 

those under VH polarization (around 0−7 dB) (Figure 3a-3k). 

3. Results 

3.1. Standardization 

The aim of this step is to standardize the range of flood variables due to by continuous 

tides for years 2014 to 2022 to contributes equally to the analysis: 

z =
value−mean

standard deviation
      (1) 

Once the standardization is done, all the variables will be transformed to the same scale, 

a flood tides variable that 0 and 1. 

 

 

 

 

 

 

 

 

(e) (f)

(g) (h)

(k)
Figure 3. Sentinel 1A and Sentinel 1B Images with 3 

bands: VV; VH; Angle. Water_mask in band VV 

masked (First Column): (a) 7 Sentinel 1A images 

2014; (b) 31 Sentinel 1A images 2015; (c) 49 Sentinel 

1A and Sentinel 1B images 2016; (d) 87 Sentinel 1A 

and Sentinel 1B images 2017; (e) 103 Sentinel 1A 

and Sentinel 1B images 2018; (f) 108 Sentinel 1A and 

Sentinel 1B images 2019; (g) 112 Sentinel 1A and 

Sentinel 1B images 2020; (h) 97 Sentinel 1A and 

Sentinel 1B images 2021; (k) 74 Sentinel 1A 2022. 

(a) (b) (c)
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Figure 4. High tide based on principal component analysis (PCA) of Sentinel-1 satellite images 

sequence for Ho Chi Minh City. The image shows the distribution of flooding caused by high tide in 

Ho Chi Minh City from September to January next year in the period 2014–2022: (a) Flood tides 

2014 (Component 1); (b) Flood tides 2015 (Component 2); (c) Flood tides 2016 (Component 3); (d) 

Flood tides 2017 (Component 4); (e) Flood tides 2018 (Component 5); (f) Flood tides 2019 

(Component 6); (g) Flood tides 2020 (Component 7); (h) Flood tides 2021 (Component 8); (k) Flood 

tides 2022 (Component 9). 

The Can Gio area is the area most affected by high tide from 2014 to 2022 from Sentinel-

1A and Sentinel-1B. In addition, the regional city centers of Cu Chi district, Binh Chanh 

district, and Nha Be district are affected (Figure 4a-4k). 

3.2. Covariance matrix computation 

The variables of the input data set vary from the mean with respect to each other, to see 

if there is any relationship between them. Because sometimes, variables are highly correlated 

in such a way that they contain redundant information. To identify these correlations, we 

compute the covariance matrix from 0.3588 to 0.3746 will be selected. The covariance matrix 

is a 9 × 9 symmetric matrix (where 9 is the number of dimensions) that has as entries the 

covariances associated with all possible pairs of the initial variables (Table 1). 

Table 1. Covariance matrix for 9-dimensional flood tides data year 2014 to 2022. 

 1 2 3 4 5 6 7 8 9 

1 0.0370 0.0288 0.0284 0.0280 0.0272 0.0278 0.0271 0.0270 0.0262 

2 0.0288 0.0359 0.0310 0.0303        0.0296        0.0301        0.0293        0.0291        0.0282 

3 0.0284 0.0310 0.0358 0.0317        0.0306        0.0308        0.0302        0.0302        0.0292 

4 0.0280 0.0303 0.0317 0.0363        0.0318        0.0319        0.0311        0.0309        0.0301 

5 0.0272 0.0296 0.0306 0.0318        0.0353        0.0324        0.0314        0.0312        0.0302 

6 0.0278 0.0301 0.0308 0.0319        0.0324        0.0374        0.0329        0.0325        0.0316 

7 0.0271 0.0293 0.0302 0.0311        0.0314        0.0329        0.0362        0.0330        0.031 

8 0.0270 0.0291 0.0302 0.0309        0.0312        0.0325        0.0330        0.0370        0.0328 

(d) (e) (f)

(g) (h) (k)
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 1 2 3 4 5 6 7 8 9 

9 0.0262 0.0282 0.0292 0.0301 0.0302        0.0313        0.0313        0.0328        0.0359 

3.3. Compute the eigenvectors and eigenvalues of the covariance matrix to identify the 

principal components 

Eigenvectors and eigenvalues are the linear algebra concepts that we need to compute 

from the covariance matrix to determine the principal components of the flood tides data. 

Principal components are new variables that are constructed as mixtures of the initial 

variables. These combinations are done in such a way that the new variables (i.e., principal 

components) are uncorrelated and most of the information within the initial variables is 

squeezed or compressed into the first components. So, the idea is 9-dimensional data gives 

you 9 principal components, PCA tries to put maximum possible information in the first 

component, then maximum remaining information in the second and so on Table 2. 

Table 2. Eigenvectors of flood tides data year 2014 to 2022. 

1 0.3079 0.7306 0.5768 -0.1828 -0.0699 -0.0020 -0.0003 -0.0096 -0.0115 

2 0.3265 0.3343 -0.3588 0.5572 0.5064 0.2598 -0.1334 -0.0143 0.0154 

3 0.3335 0.1791 -0.4010 0.1740 -0.4008 -0.6055 0.3703 -0.0233 -0.0196 

4 0.3386 0.0219 -0.3455 -0.2906 -0.4377 0.3101 -0.4929 0.3839 0.0524 

5 0.3358 -0.0955 -0.1930 -0.3903 0.0136 0.3148 0.2004 -0.7386 -0.0354 

6 0.3450 -0.1788 -0.0168 -0.4138 0.4905 -0.0814 0.3916 0.4743 0.2271 

7 0.3395 -0.2628 0.0144 -0.0633 0.2367 -0.3928 -0.4154 -0.0610 -0.6356 

8 0.3406 -0.3214 0.3027 0.2362 -0.0554 -0.1992 -0.2975 -0.2076 0.6772 

9 0.3308 -0.3289 0.3289 0.3945 -0.2938 0.4120 0.3838 0.18519 -0.2844 

3.4. Feature vector 

As we saw in the previous step, computing the eigenvectors and ordering them by their 

eigenvalues in descending order (0.27831-0.00332), allow us to find the principal 

components in order of significance. In this step, what we do to choose whether to keep all 

these components or discard those of lesser significance (of low eigenvalues), and form with 

the remaining ones a matrix of vectors that we call feature vectors. This makes it the first step 

towards dimensionality reduction, because if we choose to keep only 7 eigenvectors 

(components) out of 9: 

Table 3. Percent and accumulative eigenvalues. 

Component Eigen value Percent of eigen values Accumulative of eigen values 

2014 0.2783 85.0812 85.0812 

2015 0.0141 4.4332 89.4137 

2016 0.0085 2.5978 92.0115 

2017 0.0059 1.8324 93.8439 

2018 0.0052 1.5943 95.4382 

2019 0.0042 1.2951 96.7334 

2020 0.0037 1.1560 97.8894 

2021 0.0035 1.0968 98.9862 

2022 0.0033 1.0138 100.000 

Table 4. Mean vector. 

 Mean vector 

2014 0.0384 

2015 0.0373 

2016 0.0372 

2017 0.0377 

2018 0.0366 



J. Hydro-Meteorol. 2023, 16, 65-76; doi:10.36335/VNJHM.2023(16).65-76                            73 

 Mean vector 

2019 0.0389 

2020 0.0376 

2021 0.0385 

2022 0.0373 

This makes it the first step towards dimensionality reduction, because if we choose to 

keep only 9 eigenvectors (components) out of 9, the final data set will have only 7 

dimensions. 2016 and 2018 are the years with outstanding average values of high tide with 

values 0.0372 and 0.0366. 

3.5. Recast the data along the principal components axes  

In this step, which is the last one, the aim is to use the feature vector formed using the 

eigenvectors of the covariance matrix, to reorient the data from the original axes to the ones 

represented by the principal components (hence the name Principal Components Analysis). 

This can be done by multiplying the transpose of the original data set by the transpose of the 

feature vector. 

Final Data Set = Feature Vector T ∗ Standardized Original Data SetT  (2) 

 

Figure 4. Flood risk assessment from high tide based on Sentinel-1 satellite for Ho Chi Minh City. 

Table 5. Basic vector. 

 C1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 

2014 0.3079 0.3265 0.3335 0.3386 0.3358 0.3450 0.3395 0.3406 0.3308 

2015 0.7306 0.3343 0.1791 0.0219 -0.0955 -0.1788 -0.2628 -0.3214 -0.3289 

2016 0.5768 -0.3588 -0.4010 -0.3455 -0.1930 -0.0168 0.1448 0.3027 0.3285 

2017 -0.1828 0.5572 0.1740 -0.2906 -0.3930 -0.4138 -0.0633 0.2362 0.3945 

2018 -0.0699 0.5064 -0.4008 -0.4377 0.01361 0.4905 0.2367 -0.0554 -0.2938 

2019 0.0019 -0.2598 0.6055 -0.3101 -0.3148 0.0814 0.3928 0.1992 -0.4120 

2020 3.8316 0.1334 -0.3703 0.4928 -0.2004 -0.3916 0.4154 0.2975 -0.3838 

2021 -0.0096 -0.0143 -0.0233 0.3839 -0.7386 0.4743 -0.0610 -0.2076 0.1851 

2022 -0.0115 0.0154 -0.0196 0.0524 -0.0354 0.2271 -0.6356 0.6772 -0.2844 
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The basis vector with the largest variance is the most principal (the one that explains 

more variance from the dataset). The dot product of each basis vector against the sample. 

Can be used as a measure for membership in the training sample set. High values correspond 

to a better fit. 

4. Discussion 

After 2021, only Sentinel 1A will be in operation, so the number of images collected for 

tidal research will be limited due to the decrease in the number of images collected. 

Therefore, the results collected for the period 2014–2022 can be used as a document to help 

study the distribution for the whole of Ho Chi Minh City visually for the period that is not 

only affected by high tide but also affected by socio-economic activities as well as affected 

by climate change. 

According to the statistics of flood-prone areas due to high tides from 2014 to 2022, Can 

Gio district has the highest risk of flooding, with a flooded area of up to 3,713,236 hectares. 

The districts with a very high risk of flooding after Can Gio district are Cu Chi district, Binh 

Chanh district, and Nha Be district, with 1,764,564 ha, 1296,246 ha, and 1,012,550 hectares, 

respectively. Binh Chanh district is located in an area with a subsidence of more than 10 cm. 

Nha Be district is located in the subsidence area below 5cm and over 10 cm. In addition, 

other areas such as Hoc Mon district (inundated with 545,739 ha), district 2 (inundated with 

673,997 ha), district 9 (inundated with 480,466 ha), Tan Binh district (inundated with 

472,860 ha), and district 7 (inundated with 428,667 ha) are also at high risk of flooding due 

to high tides. Areas of District 2, District 7, District 9, and Tan Binh district are also located 

in the subsidence area of 5-10 cm. Areas with the lowest risk of flooding are District 3 and 

District 10, with a flooded area of just over 3,9 hectares. However, District 3 and District 10 

are areas located in the subsidence area of 5-10 cm. 
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